AFC-705 PRODUCT BINDER
Ultra Premium Full Spectrum Fuel Additive Concentrate
TABLE OF CONTENTS

AFC-705 MONEY SAVING TECHNOLOGY .. 4

INTRODUCTION ... 5

THE BENEFITS OF AFC-705 .. 6

TANK CLEANING WITH AFC-705 ... 6

LUBRICITY ENHANCER & CORROSION INHIBITOR ... 8

EFFECTS OF AFC-705 ON COMBUSTION PROCESS ... 9

 EFFECTS ON COMBUSTION BYPRODUCTS ... 9

HOW AFC-705 WORKS ON DEPOSITS ... 10

ELIMINATING COMBUSTION DEPOSITS ... 11

THE EFFECTS OF AFC-705 ON SO\textsubscript{x} .. 12

THE EFFECTS OF AFC-705 ON NO\textsubscript{x} .. 13

THE EFFECTS OF AFC-705 ON LOW SULFUR FUELS ... 14

AFC 705 IN FUELS CONTAINING VANADIUM AND SULFUR .. 15

THE EFFECT OF AFC-705 ON FUEL SPECIFICATIONS ... 16

POUR POINT AND CLOUD POINT .. 18

 POUR POINT .. 18

 CLOUD POINT .. 18

COMBUSTION CATALYST TREATMENT RATIOS ... 19

AFC-705 AN ALTERNATIVE TECHNOLOGY ... 20

WARRANTY .. 20

MATERIAL SAFETY DATA SHEET ... 20
AFC-705 is a unique and powerful broad-spectrum fuel additive specifically formulated for use in Diesel, Bio-fuels, Gasoline, Kerosene, and HFO. AFC-705 should be used as part of any preventative fuel maintenance program. AFC-705 enhances the breakdown and removal of sludge, slime, and bio-fouling from tank walls and baffles that are difficult to access. AFC-705 effectively decontaminates and cleans an engine’s entire fuel and injection system. It continues to work in storage tanks cleaning and stabilizing fuel for up to 12 months with a single dose. AFC-705 is ideally used for applications where there is high turn-over fuel such as: commercial and non-commercial vehicles, heavy equipment, recreational and work boats, and also smaller engines.

AFC-705 SPECIFICATIONS

<table>
<thead>
<tr>
<th>Active Ingredients</th>
<th>Combustion Catalyst, Dispersant, Surfactant Corrosion Inhibitor, Lubricity Enhancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Ratio</td>
<td>1:5000</td>
</tr>
<tr>
<td>8oz Bottle</td>
<td>320 Gallons</td>
</tr>
<tr>
<td>1 Gallon Jug</td>
<td>5,000 Gallons</td>
</tr>
<tr>
<td>5 Gallon Jug</td>
<td>25,000 Gallons</td>
</tr>
<tr>
<td>55 Gallon Drum</td>
<td>275,000 Gallons</td>
</tr>
</tbody>
</table>

AFC-705 FUEL CATALYST

A unique and powerful broad spectrum concentrate for use in diesel, gasoline, bio-fuel, kerosene, and HFO. Benefits include:

- Extended Engine Life
- Extended Filter Life
- Removes / Prevents Carbon Build Up
- Prevents Corrosion
- Cleans Injection System
- Stabilized Fuel up to 12 mo.
- Added Lubricity
- Improved Combustion
- Lower Emissions
- Improved Fuel Economy

Using AFC-705 accelerates tank cleaning and the fuel restoration process. It enhances the breakdown and removal of sludge, slime, and bio-fouling from tank walls and baffles that are difficult to access. AFC-705 effectively decontaminates and cleans the entire fuel and injection system. It continues to work in storage tanks cleaning and stabilizing fuel for 6 months or longer.
AFC-705 MONEY SAVING TECHNOLOGY

Combustion chamber deposits are rapidly modified and removed during operation with AFC 705 treated fuel. Deposits removal reduces fuel consumption, oil consumption, emissions and maintenance costs.

Caterpillar D348 777 diesel engine head after 13,260 hours of continuous operation with untreated Fuel

Caterpillar 3408 diesel engine head after 13,788 hours of continuous operation with AFC 705 treated Fuel
INTRODUCTION

AFC-705 is a High Performance, Full Spectrum Additive Package Concentrate. It combines combustion surface modifiers with lubricity enhancers, corrosion inhibitors, surfactants, and dispersants. This unique formulation removes and prevents carbon-based deposits in the combustion chamber, eliminates microbial contamination, clogged filters, and the build up of sludge in fuel storage and delivery systems. The immediate results of using AFC-705 are:

1. Cleaning and decontaminating the entire fuel system.
2. Lowering fuel consumption by 5 to 10%.
3. Reducing harmful exhaust emission.
4. Engines run better and smoke less.
5. Increased performance

The AFC-705 surfactant and dispersant components break down and dissolve sludge and organic debris in fuel tanks and filter systems. A very small dosage of AFC-705 decontaminates the entire system, restores fuel quality, and eliminates the need for costly tank cleaning procedures and disposal fees.

The use of AFC provides Optimal Fuel Quality, clean tanks and filter elements. It reduces operating cost, maintenance, and downtime while extending equipment life.

The AFC-705 combustion catalyst promotes the removal of carbon deposits in the combustion chamber. AFC treated fuel burns cleaner, more completely, and will prevent the formation of new deposits. New engines stay clean while older engines become clean.

The complete elimination of deposits in the combustion chamber can more than double engine life. There is less wear on the engine parts and oil stays clean much longer. During inspection disassembly, a simple wipe down with a shop cloth shows that engine parts still look brand new. Machining marks and serial numbers are often clearly visible as well.

AFC-705 is extremely cost effective technology. It is designed to decontaminate the total fuel system, enhance combustion and fuel economy, while reducing harmful emissions, without spending a dime on redesigning engines or retrofitting refineries.

AFC-705 extends the life and performance of all equipment, such as Engines, Turbines, Boilers, etc. using hydrocarbon based fuels like diesel, gasoline, bio-diesel, HFO, hydraulic oil, turbine, and kerosene fuels.
THE BENEFITS OF AFC-705

The benefits of using AFC-705 Fuel Catalyst are derived from its unique formulation of dispersants, surfactants, combustion enhancers, and deposit surface modifiers, targeting problems of contaminated fuel systems in storage tanks and deposits in engines, turbines and burners.

Remove engine deposits. AFC-705 combustion catalyst removes deposits by interacting with the surface of the deposit, lowering the energy of activation of its chemical bonds. This allows the release of carbon in the form of CO$_2$ at the lower temperatures.

Prevent deposit formation. The AFC-705 catalytic components inhibit the agglomeration process from forming heavy deposits. The agglomeration process is stopped at the primary and secondary particle formation phase, which results in smaller, lighter particles.

Reduce fuel consumption. Deposits in the combustion chamber absorb and protect the fuel from complete combustion. AFC-705 catalyzes the combustion process. It destroys and removes deposits, which leads to the more efficient conversion of the fuel to CO$_2$. The surfactant component in AFC reduces the fuel droplet size, which enhances the combustion process, burning a higher percentage of the fuel before the exhaust valve opens. AFC treated fuel immediately reduces fuel consumption by 5 to 10%.

Reduce Emissions. As deposits are removed, the emissions of CO, NO$_x$, SO$_x$, HC and particulates are drastically reduced.

Reduce carbon content of ash. The catalyst interferes with the agglomeration of combustion by-products by enhancing CO$_2$ production. With less carbon available to end up in the ash complex, the amounts of ash or soot will be significantly reduced.

Cooler Exhaust, Lower NOx. Fuel has a limited amount of energy that becomes available during combustion through the production of CO$_2$. The catalytic components in AFC-705 enhance the combustion process. When more of the fuel's energy is released during the combustion phase, less energy will be available to be released during the exhaust phase. The difference in energy release correlates to a temperature difference. Higher energy release in the combustion chamber means lower energy release during the exhaust phase, which results in lower production of NO$_x$.

Extend lube oil life. AFC-705 treated fuel produces smaller and less abrasive particles, which in connection with the removal of deposits, result in cleaner, longer lasting lubrication oil. This leads to reduced engine wear, less maintenance and down time, and lower operating cost.

Extend Equipment life. Engine life can be more than doubled as the result of complete deposit removal, cleaner oil, and reduced friction. Injectors, valves, rings, and other associated parts show little sign of wear, even after extended use.

Enhanced fuel lubricity. AFC-705 contains a lubricity enhancing agent that promotes less friction between moving parts.

Corrosion inhibition. Prevent the corrosion process with AFC-705’s corrosion inhibitor.
TANK CLEANING WITH AFC-705

One gallon of AFC-705 can treat and clean 5000 gallon fuel tank. This full spectrum additive cleans the entire fuel system, restores fuel quality and provides Optimal Fuel Quality for engines and storage tanks. Benefits include improving fuel economy, reducing emissions and lowering operating cost, maintenance, and down time.

80% of all engine failures originate in the fuel tank. Frequent filter changes, fuel dialysis and tank cleaning are generally viewed as good house keeping, and have become accepted as standard periodic maintenance.

The normal aging process of the fuel is often accelerated by microbial contamination, chemical incompatibility and condensation of water in the system. Oxidation, polymerization, and stratification will lead to darkening of the fuel, the build up of tank sludge, filter plugging, corrosion, and fuel breakdown. A slimy, jelly-like layer will develop at the water/fuel interface, while a bio film is growing on the bottom, walls, and baffles of service and storage tanks, fuel lines, and delivery systems.

The process of fuel breakdown is most severe in the bottom of tanks. Everytime a tank is re-fulled with fresh fuel, the existing fuel is contaminated with new oxygen that accelerates the problem. Because the higher, and therefore dryer, layers of the fuel are primarily used, it is easy to overlook the symptoms of this continuous process of fuel breakdown.

Suddenly we get a wake up call, and experience some or all of these symptoms:
-- clogged filters -- fouled and corroded injectors -- smoking engines -- loss of power and RPMs -- fuel pump problems -- and ultimately complete engine failure. All of this can be prevented by simply monitoring fuel quality, and using the available AXI INTERNATIONAL technology.

The surfactants and dispersants in AFC-705 break down and dissolve the tank sludge and bio-film. It eliminates clogs in filter elements, and recovers the BTU value that would otherwise be lost.

Traditionally, tank cleaning meant filtering the fuel in the tank, removing the fuel for filtration, or complete fuel disposal. This also often came in conjunction with opening the tank and physically removing tank sludge and bio-film. All of these techniques are time consuming, costly, and only partially effective. Filtration will only remove the suspended debris and has no effect on the bio-film growing on tank walls, bottom, and baffles, or on the process of fuel break down. At best, only temporary relief at an extremely high price can be expected. AXI International provides a Complete Solution for Optimal Fuel Quality.

We recommend the use of AFC-705 to completely decontaminate and clean the entire fuel system, to insure continuous Optimal Fuel Quality, enhanced combustion, and reduced emissions.

The AFC catalyst can reduce fuel consumption up to ten percent. When fuel economy is of primary importance, the continued use of AFC-705 is highly recommended.
LUBRICITY ENHANCER & CORROSION INHIBITOR

In low sulfur fuel, many of the fuel components that contribute to the lubricating properties of the fuel have been removed. The components used to formulate the lubricity enhancers in AFC-705 work to offset these lower lubricating properties in two different ways, over two different temperature ranges.

A. The first component works by coating the surfaces with a protective lubricating film. This film also acts as a corrosion inhibitor, which keeps the parts clean and free of pits. The film works best at lower temperatures up to about 300°C, and is constantly being replenished as it is broken down by friction and heat.

B. The second component breaks down large abrasive particles into smaller smoother particles. This component works at temperatures higher than 200°C, and continues to work in conjunction with the combustion catalysts once it enters the combustion chamber.

The two components together address corrosion, lubrication, and friction problems over the entire engine operating temperature range. AFC-705 lubricity enhancers will not change the fuel specifications in any way. The sulfur content, BTU value, and other specifications will remain unchanged.

The principle benefit of AFC-705 lubricity enhancers is the extended life of engine parts that rely on the fuel for lubrication. Keeping these parts operating normally, solves many of the problems related to switching from a regular to a low sulfur diesel fuel.

Engine parts will be more resistant to acid corrosion, and will show less wear due to carbon grit. As a result, engine lubricating oil will stay cleaner much longer. The mineral content, carbon grit, and acid forming compounds in the oil will be much lower. AFC-705 lubricity enhancers will not interfere with crankcase oil additives. Instead, they may actually help them do a better job.

As in any maintenance situation, the effectiveness of AFC-705 lubricity enhancers does not replace good maintenance practices. However, its use will significantly reduce maintenance requirements and down time, while extending equipment life.

The use of AFC-705 is highly recommended, in particular, in situations with low sulfur or low lubricity fuel. The lubricity enhancer and corrosion inhibitor package in the catalyst are designed, to improve engine performance, and increase the life of key engine parts, while saving fuel and reducing harmful emissions.
EFFECTS OF AFC-705 ON COMBUSTION PROCESS

The AXI INTERNATIONAL catalyst interacts with the heavier, long chain, combustion resistant elements of the fuel, and existing carbon deposits. This interaction allows these deposits to break down and burn. The "molecular atomization" of the fuel, and the destruction and burning of the surface deposits produce the following positive effects on the combustion process:

- Quicker, more complete combustion
- Optimal use of available oxygen
- Lower excess air requirements
- Removal of existing deposits
- Better heat transfer
- Lower fuel consumption
- Increased overall efficiency

EFFECTS ON COMBUSTION BYPRODUCTS

AFC 705 enhances the combustion process, which leads to the following positive effects on combustion byproducts:

- **Inhibition** - of new deposit formation
- **Removal** - of old carbon deposits
- **Prevention** - of new deposit formation
- **Decrease** - fuel consumption
- particulate, smoke and soot
- NOx, SOx, CO, and VOC emissions
- Carbon content in the ash
- fouling and corrosion due to decrease V2O5 activity
- cold-end corrosion due to decreased SO3 formation

These effects lead to a significant increase in energy output by burning a larger portion of the Carbon available in fuel, and a significant reduction in corrosion due to much lower formation of SO3, which increases the amount of SO2, harmlessly captured in ash.
HOW AFC-705 WORKS ON DEPOSITS
The Deposit Removal Mechanism

Combustion Deposits are mostly carbon and aromatic compounds in a highly combustion resistant state. These deposits are the source of many engine problems, such as higher than normal fuel consumption, excessive harmful exhaust, and costly maintenance. Fuel problems and incomplete combustion ultimately cause complete engine failure.

Deposit formation begins with spherical molecules called primary particles and branched aromatic chains, both of which are produced in the early stages of combustion. The chain branches consist of alkyl, alcohol, carbonyl, and carboxyl compounds. The alkyls oxidize to alcohol, oxidizing to carbonyl, oxidizing to carboxyl. The oxidation process stops with the carboxyl compounds, which are acidic and highly combustion resistant with a high energy of activation.

The various branch compounds are attracted to the primary particles, which spin at extremely high velocities. When a branch becomes attached to a primary particle, the entire chain structure is quickly wrapped around the primary particle forming a secondary particle. These secondary particles agglomerate and form a tertiary particles. This can happen when several primary particles become attached to the same chain on different branches, and then simultaneously become secondary and tertiary particle, as they wrap up the chain.

Tertiary particles agglomerating on a surface will become further coated to form quaternary particles. The coated quaternary particles make up deposits. The chain structures coating the surface of deposits leave exposed branches. It is at these branches where the AFC-705 catalyst begins to break down and destroy the deposits as it modifies the surfaces.

The carboxyl branches are acidic, and attract the AFC-705 catalyst oxide which is basic. When the two combine, a process called dehydration occurs, and a water molecule is produced. What remains is a compound with a low energy of activation, which readily breaks down at high temperatures, releasing a CO2 molecule and the catalyst oxide.

Upon releasing the CO2 and the catalyst oxide, the end of the chain re-oxidizes to an alkyl, alcohol, or carbonyl compound, and finally to a carboxyl compound. When the end of the chain reaches this state, the catalyst oxide once again combines with the carboxyl and starts the break down cycle again. Over time, the deposits are removed by being converted to CO2 and water.

AFC-705 inhibits the formation of new deposits in much the same way as it destroys existing deposits. It interacts with the ends of the aromatic chains and the attachment sites on the primary particles. This interaction keeps the primary particles from wrapping up full chains by blocking or destroying the attachment sites and breaking the chains.

This interference stops the deposit agglomeration process at the primary and secondary particle agglomeration stage. This results in much lighter and smaller particles that don't stick together and are more easily oxidized. The result of this interference is a lower mass of particulate emissions, and instead, an increased energy output and increased production of CO2 and water, which are the desirable end products of the combustion cycle.

Deposits impede thorough combustion and can cause the production of soot and smoke. The use of AFC-705 enhances energy output and optimizes the production of CO2 and water.
during the entire combustion process, which significantly lowers the output of both regulated and unregulated emissions.

ELIMINATING COMBUSTION DEPOSITS

AFC-705 technology is based on the catalytic effects of organo-metalics. The main active ingredients are synergistic, multifunctional combustion catalysts containing combustion surface modifiers and deposit surface modifiers. AFC-705 can be used with any liquid hydrocarbon fuel such as gasoline, diesel, residual fuel, and HFO.

In an AFC-705 treated environment, the surfaces of the fuel particles and deposits are modified such that the catalyst lowers the energy of activation of the deposit surfaces. The modified surface deposits can then burn up at a much lower temperature.

A typical engine develops a temperature gradient ranging from 200°C at the combustion chamber wall, to 1200°C in the combustion center. Many of the fuel components require a higher temperature than 600°C to combust. It is not possible to completely burn heavy fuel components in temperatures ranging from 200°C – 600°C. Incomplete combustion causes deposits, harmful emissions, and the consequential mechanical problems.

Combustion chamber deposit surfaces and fuel particles treated with AFC-705 begin to combust at temperatures as low as 200°C, and then burn over the entire temperature range. This results in complete combustion and, eventually, total removal of all engine deposits while preventing new deposit buildup. Complete combustion leads to better performance, lower fuel consumption, lower emissions (CO, SOₓ, NOₓ, HC’s, and PM-10), lowering operating cost, maintenance and downtime.

The process of deposit removal begins immediately, and can take up to 600 hours or 4,000 miles. The actual time needed depends on operation, history, and age of the equipment. AFC-705 treated fuel completely removes the deposits from fuel injectors, intake and exhaust valves, and other exposed combustion chamber parts of dirty engines while preventing deposits in new engines.

In older engines, the use of AFC-705 treated fuel is even more pronounced than new engines. The performance of new engines will not degrade, and maintenance will remain at a minimum.

Fuel treated with AFC-705 Combustion Catalyst burns completely, resulting in new engines staying clean, while older, dirty engines becoming clean. AFC-705 is the most cost effective way to conserve energy and protect the environment while enhancing performance and engine life.

AFC-705 is available in 8 oz bottles, 1 gallon containers, 55 gallon drums or by various sizes of tank trucks and rail cars.

AFC-705 treatment ratio is 1:5,000.
THE EFFECTS OF AFC-705 ON SO\textsubscript{x}

The treatment of carbon based fuels with AFC-705 has a significant effect on trace sulfur combustion chemistry. In diesel engines, gasoline engines, and open flame applications (boilers), the use of AFC-705 treated fuel will significantly reduce sulfur oxide (SO\textsubscript{x}) emissions, and related sulfur acid corrosion problems.

AFC-705 does not react with the sulfur in the fuel, nor does AFC-705 have any effect on the sulfur content of the fuel. AFC-705 does not effect fuel specifications at recommended treatment levels. Fuel containing one percent sulfur prior to AFC-705 treatment will still contain one percent sulfur after AFC-705 treatment. However, the use of AFC-705 will determine where the sulfur ends up, and what its chemical state will be after combustion.

The combustion of sulfur in fuels invariably leads to the formation of sulfur dioxide \(S + O_2 \rightarrow SO_2\) (1), and sometimes sulfur trioxide \(2SO_2 + O_2 \rightarrow 2SO_3\) (2). Sulfur trioxide formation is catalyzed by vanadium pentoxide \((V_{5+})\). This is the most stable oxidation product of vanadium, when vanadium containing fuels are burned in air \(4V + 5O_2 \rightarrow 2V_2O_5\) (3). The catalytic effect is thought to relate to the reversible dissociation \(2V_2O_5 \rightarrow 2V_2O_4 + O_2\) (4) at temperatures between 700° C -1125° C. The sulfur trioxide reacts with water vapor to form sulfuric acid \(SO_3 + H_2O \rightarrow H_2SO_4\) (5) which is primarily responsible for acid corrosion problems in combustion equipment.

AFC-705 affects the production of gaseous SO\textsubscript{x} emissions. It enhances the formation of CO\textsubscript{2} during the combustion cycle thus limiting the amount of SO\textsubscript{x} produced during the exhaust cycle. The increased production of CO\textsubscript{2} reduces the amount of excess O\textsubscript{2} available for other reactions. The difference in the amount of CO\textsubscript{2} produced during the combustion and the exhaust cycles correlates to a temperature differential. This temperature differential results in lower exhaust temperatures and shorter heat transfer times.

Minerals contained in fuel are generally oxidized to metal oxides during the combustion process. When vanadium is oxidized to \(V_{5+}\), the production of sulfur trioxide increases due to reversible dissociation, and sulfuric acid is ultimately formed. The use of AFC-705 inhibits the formation and reversible dissociation of \(V_{5+}\) during the exhaust phase by limiting the available \(O_2\), high temperatures, and time periods needed for these reactions to occur.

This greatly reduces the catalytic effect \(V_{5+}\) has on the formation of Sulfur trioxide, and thus the formation of sulfuric acid. By reducing the catalytic effect of vanadium, AFC-705 promotes the combination of SO\textsubscript{x} compounds with other minerals in the fuel, such as Na and Ni. This leads to the formation of stable mineral salts and mixed mineral sulfates found in the clinker or fly ash.

AFC-705 decreases the gaseous sulfur emissions by increasing the particulate portion of the combustion residue products. AFC-705 treated fuels will show slightly higher sulfate content in the ash than untreated fuel.
THE EFFECTS OF AFC-705 ON NOX

The formation of NOX takes place when combustion temperatures reach above 2500 °F and pressures are the highest. This especially occurs when the engine is under high load or wide open throttle. NOX formation is influenced by available excess oxygen, time, and deposit buildup.

AFC-705 significantly lowers the amount of NOx production in internal combustion engines and open flame boilers.

This reduction correlates with combustion deposit removal. Carbon deposit build up in the combustion chamber causes higher compression. This directly affects the factors responsible for the formation of NOx, and supports a direct connection between NOx emissions and deposits. This connection is supported by the fact that engines using AFC-705 treated fuel produce lower amounts of NOx. The process by which AFC-705 inhibits the formation of NOx is a direct result of the process by which it removes existing deposits and prevents the formation of new deposits, namely through the promotion of CO2 production.

AFC-705 affects the three main factors enhancing the formation of NOx. Fuel has a finite amount of energy, which is released through the production of CO2. AFC-705 promotes the formation of CO2 during the combustion phase. If more CO2 or energy is produced during the combustion phase then less is available to be released during the exhaust phase. The difference in the amount of energy released during the two phases correlates to a temperature differential. This temperature differential, its magnitude and cause are important for three reasons.

Lower exhaust temperature. If the temperature of the combustion phase rises due to increased CO2 production then the temperature of the exhaust phase will go down. This denies the nitrogen molecules the high temperatures needed to form NOx compounds. Lower temperatures slow down the production of NOx by requiring more time for the reactions to take place. The greater the amount energy released during the combustion phase and the associated lower exhaust gas temperature the lower the rate of NOx production will be.

Shorter heat transfer time. The greater the magnitude of the temperature difference, the shorter the heat transfer time becomes. Increase in heat transfer to the surrounding engine components during combustion will decrease exhaust temperature and time for the conversion of nitrogen to NOx compounds. The shorter the heat transfer time the lower the NOx emissions.

Oxygen depletion. Increasing the production of CO2 uses up more of the available oxygen. AFC-705 promotes the production of CO2 during the combustion phase, lowering oxygen availability for NOx reactions during the exhaust phase. Less available oxygen results in lower NOx emissions.

The combination of lower exhaust temperatures, shorter heat transfer time, less available oxygen, and the complete removal of carbon deposits cause a very significant reduction of NOx emissions.
THE EFFECTS OF AFC-705 ON LOW SULFUR FUELS

In the past few years, the sulfur content of diesel fuel has become a major concern due to its contribution to \(\text{SO}_x \) emissions, especially \(\text{SO}_3 \). When combined with water, it forms acid. This has led to legislation requiring the removal of all but .05% of the sulfur in all diesel fuel used in over the road applications as of October 1, 1993. New regulations will lower allowable sulfur content even more. Although sulfur itself does not contribute to the performance of a fuel, the fuel components removed with the sulfur to produce a low sulfur fuel did. These other fuel components have a BTU value, and give the fuel its lubricating properties. The latter is important since many engine manufacturers use the fuel itself to lubricate the fuel pump and other engine parts that come in contact with the fuel. These same components also provide an important portion of the total energy content of the fuel.

Low sulfur fuels have a lower BTU value, a lower lubricity factor, and present significant problems for fuel producers and users alike. In the refining process, considerable amounts of extra work are required to remove the sulfur. The process may require extensive re-tooling of the refinery, which translates into a significant cost increase for the end user. The result is a lower energy yielding fuel at a higher cost.

Cost increase is not the only problem the end user will experience. There will be an immediate drop in fuel economy of about 3 to 7%, and a considerable loss of power resulting from the lower BTU value. Because of the reduced lubricating properties of the fuel, vital engine parts will wear out more quickly. This can be noticed in as little as one or two months. The reduction in lubricity will also contribute to a loss in usable power due to the increased friction the engine will have to overcome. Even a perfectly tuned engine will experience a noticeable drop in efficiency.

The traditional solution has been to add lubricity and anti-wear additive packages to the fuel. AFC-705 contains a premium lubricity and anti-wear additive package, correcting the friction and wear problems.

New legislation offers another alternative. If it can be shown that a higher sulfur content fuel (.1-.2% sulfur content) can meet the emission standards of a lower sulfur fuel mandated for use in a particular area, then a waiver can be received for the use of that fuel. The benefits are that higher sulfur fuel will be easier to manufacture, less expensive to buy, and offer better fuel economy than the low sulfur fuel.

One may qualify to obtain a waiver by treating the higher sulfur fuel with AFC-705 Fuel Catalyst. AFC-705 will decrease the emissions of \(\text{SO}_x \) by catalyzing reactions between the sulfur and minerals in the fuel thus converting the combustion products of sulfur to harmless solid sulfur salts found in common soil and rock. A higher concentration of sulfur may therefore be present in the fuel while resulting in constant or lower \(\text{SO}_x \) emissions when compared to a reference low sulfur fuel.

AFC-705 also increases fuel economy of engines, turbines and burners. Lower fuel consumption to obtain the same energy output immediately translates into lower overall emissions.

AFC-705 keeps the engine clean and free of deposits, which lowers maintenance and operating cost. The lubrication oil of engines using AFC-705 stays significantly cleaner and last much longer. Regardless of the type of fuel used, AFC-705 treated fuel will perform better than non-treated fuel. The results will always be immediately evident.

The cost of AFC treated fuel will always be significantly less than the cost of using low sulfur fuel.
In all applications, AFC-705 more than pays for itself. It saves money, and enhances your bottom line.

AFC 705 IN FUELS CONTAINING VANADIUM AND SULFUR

Crude oils from Alberta, Canada and from Venezuela contain considerable amounts of dissolved vanadium oxides. Normal refinery practice does not provide for the removal of these vanadium oxides. In fact, a major source of commercial vanadium is derived from the fly ash from burning Canadian crude.

In an engine where there is no catalyst for the fuel combustion, unused oxygen can cause the vanadium (oxidation state of three) to be oxidized to vanadium pentoxide, (V\textsubscript{2}O\textsubscript{5}). This V\textsubscript{2}O\textsubscript{5} can be a problem in itself because it deposits as a hard coating on the surface on the combustion chamber walls. Under many circumstances it has to be manually chiseled off.

If an engine is already damaged by vanadium deposits (V\textsubscript{2}O\textsubscript{5}), it is unlikely that AFC 705 can burn off these deposits. Whereas, if the deposits were carbon, adding AFC 705 to the fuel will definitely burn off these carbon deposits.

In addition, the presence of V\textsubscript{2}O\textsubscript{5} can catalyze the transformation of sulfur dioxide, (SO\textsubscript{2}), to form sulfur trioxide, (SO\textsubscript{3}). This is important because sulfur trioxide (SO\textsubscript{3}) and water gives the highly corrosive sulfuric acid.

Since water is one of the products of hydrocarbon combustion, much damage occurs to all metal parts of the combustion chamber and the exhaust system, resulting from the acid that is produced when vanadium is in the fuel.

The use of AFC 705 results in the complete use of the oxygen present in combustion, leaving little or no oxygen to oxidize the mixed vanadium oxides to the V\textsubscript{2}O\textsubscript{5}. By using up all the available oxygen to burn the fuel completely, there is little or no oxygen left over to oxidize the SO\textsubscript{2} to SO\textsubscript{3} whether V\textsubscript{2}O\textsubscript{5} is present or not.

In new engines and boilers, the use of AFC 705 will significantly diminish the formation and deposits of V\textsubscript{2}O\textsubscript{5}, and therefore prevent production of SO\textsubscript{3} and the resultant acids. This clearly and significantly diminishes engine damage caused by acidic corrosion.

As a result, engine life and overhaul cycles will be dramatically extended, while engine maintenance, down time, and overall cost of operations will be significantly reduced. The cost of AXI INTERNATIONAL'S AFC 705 is more than justified on the basis of its effect on preventing the oxidation of the vanadium oxides and sulfur which are very difficult to remove from fuels.
THE EFFECT OF AFC-705 ON FUEL SPECIFICATIONS

Data from independent testing laboratories using ASTM procedures demonstrate that AFC-705 fuel treatment does not significantly change any of the commonly accepted fuel specifications. The data shown below are representative of AFC-705 at the recommended 1:5000 treatment ratio in a baseline #2 diesel fuel. The data in this report is within the limits of uncertainty as specified in the reference methods.

The data in the following table confirms that AFC-705 fuel treatment does not cause any fuel instability nor any significant changes in fuel specifications, which would cause the fuel to be harmful to an internal combustion engine or any other combustion equipment. The use of AFC-705 treated fuels will not void equipment warranties.

<table>
<thead>
<tr>
<th>TEST DESCRIPTION</th>
<th>FINAL RESULT - BASELINE</th>
<th>FINAL RESULT - TREATED</th>
<th>LIMITS/* DILUTION</th>
<th>UNITS OF MEASURE</th>
<th>TEST METHOD</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D-86 DISTILLATION</td>
<td></td>
<td>*1</td>
<td></td>
<td>ASTM D-86</td>
<td>10/06/93</td>
<td></td>
</tr>
<tr>
<td>Initial Boiling Point</td>
<td>340</td>
<td>344</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>05% Evaporated Temperature</td>
<td>424</td>
<td>420</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>10% Evaporated Temperature</td>
<td>453</td>
<td>452</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>15% Evaporated Temperature</td>
<td>471</td>
<td>469</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>20% Evaporated Temperature</td>
<td>485</td>
<td>483</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>30% Evaporated Temperature</td>
<td>509</td>
<td>509</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>40% Evaporated Temperature</td>
<td>528</td>
<td>528</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>50% Evaporated Temperature</td>
<td>548</td>
<td>548</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>60% Evaporated Temperature</td>
<td>565</td>
<td>565</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>70% Evaporated Temperature</td>
<td>584</td>
<td>582</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>80% Evaporated Temperature</td>
<td>606</td>
<td>604</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>90% Evaporated Temperature</td>
<td>633</td>
<td>631</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>95% Evaporated Temperature</td>
<td>659</td>
<td>656</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>End Point</td>
<td>673</td>
<td>672</td>
<td>1</td>
<td>Deg. F</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>% Recovery</td>
<td>97.9</td>
<td>97.9</td>
<td>0.1</td>
<td>Vol. %</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>% Residue</td>
<td>1.6</td>
<td>1.5</td>
<td>0.1</td>
<td>Vol. %</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>% Loss</td>
<td>0.5</td>
<td>0.6</td>
<td>0</td>
<td>Vol. %</td>
<td>ASTM D-86</td>
<td></td>
</tr>
<tr>
<td>TEST DESCRIPTION</td>
<td>FINAL RESULT – BASELINE</td>
<td>FINAL RESULT – TREATED</td>
<td>LIMITS/*DILUTION</td>
<td>UNITS OF MEASURE</td>
<td>TEST METHOD</td>
<td>DATE</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Acid Number</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>mg KOH/g</td>
<td>ASTM D-664</td>
<td>10/06/93</td>
</tr>
<tr>
<td>Ash Content, Routine</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td>Wt%</td>
<td>ASTM D-482</td>
<td>10/07/93</td>
</tr>
<tr>
<td>Gross Heating Value</td>
<td>19201</td>
<td>19110</td>
<td>1</td>
<td>BTU/lb</td>
<td>ASTM D-240</td>
<td>10/04/93</td>
</tr>
<tr>
<td>Sulfur by X-Ray Spectrophotometry</td>
<td>0.039</td>
<td>0.039</td>
<td>0.005</td>
<td>Wt%</td>
<td>ASTM D-4294</td>
<td>10/05/93</td>
</tr>
<tr>
<td>Pour Point</td>
<td>15</td>
<td>20</td>
<td>-60</td>
<td>Deg. F</td>
<td>ASTM D-97</td>
<td>10/07/93</td>
</tr>
<tr>
<td>Cloud Point</td>
<td>14</td>
<td>18</td>
<td>-40</td>
<td>Deg. F</td>
<td>ASTM D-2500</td>
<td>10/07/93</td>
</tr>
<tr>
<td>Gravity, API @ 60 Deg F</td>
<td>31.9</td>
<td>31.9</td>
<td>-20</td>
<td>Deg. API</td>
<td>ASTM D-287</td>
<td>10/04/93</td>
</tr>
<tr>
<td>Conradson Carbon</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>Wt%</td>
<td>ASTM D-189</td>
<td>10/02/93</td>
</tr>
<tr>
<td>Copper Strip Corrosion</td>
<td>1a</td>
<td>1a</td>
<td></td>
<td></td>
<td>ASTM D-130</td>
<td>10/02/93</td>
</tr>
<tr>
<td>Flash Point, PMCC</td>
<td>142</td>
<td>142</td>
<td>70</td>
<td>Deg. F</td>
<td>ASTM D-93</td>
<td>10/05/93</td>
</tr>
<tr>
<td>Cetane Number, Neat</td>
<td>43.6</td>
<td>44.3</td>
<td>20</td>
<td>Cetane #'s</td>
<td>ASTM D-613</td>
<td>10/31/93</td>
</tr>
<tr>
<td>Water, Karl Fischer</td>
<td>65</td>
<td>49</td>
<td>1</td>
<td>Ppm</td>
<td>ASTM D-1744</td>
<td>10/08/93</td>
</tr>
<tr>
<td>Accelerated Stability</td>
<td>0.54</td>
<td>0.54</td>
<td></td>
<td>mg/100ml</td>
<td>ASTM D-2274</td>
<td>10/08/93</td>
</tr>
<tr>
<td>Particulate Contaminants</td>
<td>6.9</td>
<td>5.7</td>
<td>0.1</td>
<td>mg/l</td>
<td>ASTM D-2276</td>
<td>10/08/93</td>
</tr>
<tr>
<td>Viscosity @ 100 Deg F</td>
<td>3.7</td>
<td>3.70</td>
<td>0.01</td>
<td>CST</td>
<td>ASTM D-445</td>
<td>10/07/93</td>
</tr>
</tbody>
</table>

The enclosed tables describing the effect of AFC-705 on fuel specifications are within the limits of uncertainty as specified in the reference methods. There is no significant change in fuel specifications. The differences in the test values will not affect fuel performance in the field to any noticeable degree.
POUR POINT AND CLOUD POINT

POUR POINT

The pour point is the lowest temperature at which a petroleum product will begin to flow. Pour point is measured at intervals of 5°F. This interval gives a range in which to account for error inherent in the measuring procedure. A sample with a pour point of 10.5°F and a sample with a pour point of 14.5°F would be labeled as having a pour point of 15°F. Even with the 4°F difference they would be considered the same. However, a sample with a pour point of 15.5°F would be labeled as having a pour point of 20°F even though it is only 1°F higher than the 14.5°F sample mentioned before. Due to experimental and operator error, sample variations of one interval are not considered significant. Since the measured values for the two samples are only one interval apart, the difference is not significant.

CLOUD POINT

The cloud point is the temperature at which wax crystals begin to form in a petroleum product as it is cooled. Cloud point is measured at intervals of 2°F. An example similar to the one used illustrating the pour point procedure applies here. Differences of one interval are not considered significant. Wax crystals depend on nucleation sites to initiate growth. The difference in the cloud points of the two samples is explained by the fact that any fuel additive will increase the number of nucleation sites, which initiate clouding. A change in temperature at which clouding starts to occur is therefore expected upon addition of any additive. The difference between the cloud point values for the two samples is not abnormal and is not significant.
COMBUSTION CATALYST TREATMENT RATIOS

The AFC-705 combustion catalyst compound is the deposit control and combustion surface modifier, which acts as a catalyst breaking down carbon deposits. The deposits are reduced through a process called de-carboxylation, which is the release of a carbon atom in the form of CO₂.

The relatively cool surface temperature of the deposit layer restricts de-carboxylation from happening naturally in an internal combustion engine. The catalyst reduces the temperature needed for de-carboxylation from about 600°C to about 200°C. It enables the chemical reaction to occur on the cooler surface of the deposits.

The interaction of the catalyst with the exposed surface of the deposits causes the release of a water molecule and a carbon molecule in the form of CO₂. The deposit surface re-oxidizes to a carboxyl state and continues interacting with the catalyst molecules.

The effectiveness of AFC-705 in removing carbon deposits is related to the surface area and mass of the deposits, the amount of new deposit material being formed during combustion, and the amount of catalyst present. Results will be different for each combustion chamber because of its unique history of deposit buildup. However, due to the similarity in basic chemical reactions, the end result will be the same in spite of all the differences.

Once an old engine is clean, the minimum amount of catalyst needed is the amount required to inhibit new deposit formation. A new engine needs only this minimum amount to remain clean, and a dirty engine will not get any worse. The exact amount in each case depends on the size of the combustion chamber and the fuel being used. The concentration of AFC-705 catalyst in treated fuel is higher than the necessary minimum requirement. It ensures zero new deposit formation, and the complete removal of all old deposits.

The optimum amount to use in a dirty engine is the amount necessary to inhibit new deposit formation plus completely saturate all exposed surfaces of existing deposits. Excess amounts of catalyst beyond the surface saturation point, will not speed up the deposit removal process.

The concentration of the active ingredient has been calculated such that the majority of the dirty engines in operation will receive a sufficient amount of combustion catalyst required for total deposit surface saturation.

The recommended treatment ratio for AFC-705 is 1:5000. Concentrations higher than 1:2500 are not recommended. Concentrations of 1:100 may begin to produce perceptible changes in fuel specifications.

1 oz of AFC-705 treats 40 Gallons of fuel.
1 gallon treats 5000 gallons.
AFC-705, AN ALTERNATIVE TECHNOLOGY

An average reduction of five (5) to ten (10) percent in the consumption of petroleum based fuels and a very significant reduction of emissions is possible without redesigning combustion engines, turbines, and burners, or retrofitting refineries. All that is needed is to treat fuel with AFC-705.

AFC-705 contains a multi component combustion catalyst that promotes the removal of engine deposits especially those in the combustion chamber. While removing deposits, AFC-705 treated fuel burns cleaner and more completely, thus eliminating the formation of new deposits. Old engines become clean, and new engines stay clean. Initially, the use AFC-705 treated fuel will often show reductions in fuel consumption far greater than the average five (5) to ten (10) percent. The reduction of emission will increase with the removal of the existing deposits.

In addition, the use of AFC treated fuel will significantly lower equipment operating and maintenance costs while extending engine life. There is less wear on the engine parts, and engine oil stays cleaner much longer. When disassembling an engine, a simple wipe down with a shop cloth will show that the parts look as good as new, often with all the serial numbers clearly readable, and machining marks still clearly visible.

AFC-705 is extremely cost effective technology. This complete additive package improves fuel consumption and reduces emissions. It extends engine life, decontaminates and cleans the total fuel system, dissolves tank sludge, lowers operating and maintenance cost, while enhancing your bottom line.

WARRANTY

The manufacturer guarantees that the use of AFC-705 treated fuel will not damage or void the warranties of engines burning that fuel. Engine warranty is based in part on the condition that only a fuel meeting certain specifications can be used in the engine. The proper addition of AFC-705 to a fuel will not change that fuels specifications, and therefore, will not void the warranty.

Since the product was first introduced in 1989, there has never been an incident where the use of AFC-705 has caused engine damage. However, should a problem occur, the manufacturer will take full responsibility for any unusual engine damage not due to normal engine wear proven to be caused by the proper use of AFC-705.

AXI International
5400 Division Drive, Fort Myers, FL 33905 • 877-425-4239 • Fax: 239-690-1195
Internet: www.axi-international.com • Email: info@axi-international.com
AXI International
August 23, 2013
(239) 690-9589
5400 Division Drive
Fort Myers, Florida 33905

EMERGENCY TELEPHONE NUMBERS:
CHEMTREC® - ONLY IN THE EVENT OF A CHEMICAL EMERGENCY INVOLVING A
SPILL, LEAK, FIRE, EXPOSURE OR ACCIDENT (800) 424-9300 – USA
(202) 483-7616 (collect) -- INTERNATIONAL

MATERIAL SAFETY DATA SHEET
===

SECTION 1 - PRODUCT / CHEMICAL IDENTIFICATION
PRODUCT NAME AFC-705

SECTION 2 - PRODUCT INFORMATION / COMPOSITION

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CAS NUMBER</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPRIETARY ADDITIVE PACKAGE</td>
<td>*</td>
<td>>75</td>
</tr>
<tr>
<td>C9-C11 Aromatic Hydrocarbons</td>
<td>70693-06-0</td>
<td><25</td>
</tr>
</tbody>
</table>

* TRADE SECRET CLAIM GRANTED ON JULY 27, 2004 WITH HMIRC REGISTRATION NUMBER 5507

SECTION 3 - HAZARD IDENTIFICATION

APPEARANCE: Amber

PHYSICAL FORM: Liquid

EMERGENCY OVERVIEW

WARNING!

HEALTH HAZARDS

ASPIRATION HAZARD IF SWALLOWED-CAN ENTER LUNGS AND CAUSE DAMAGE MAY CAUSE CARDIAC SENSITIZATION
OVEREXPOSURE MAY CAUSE CNS DEPRESSION MAY BE IRRITATING TO THE SKIN, EYES AND RESPIRATORY TRACT
SEE "TOXICOLOGICAL INFORMATION" (SECTION 11) FOR MORE INFORMATION FLAMMABILITY HAZARDS

COMBUSTIBLE LIQUID AND VAPOR

PER CANADIAN CPR SECTION 38

REACTIVITY HAZARDS

STABLE

POTENTIAL HEALTH EFFECTS, SKIN

SLIGHTLY IRRITATING. Contact may cause reddening and pain or burning sensation.
Defatting agent. Repeated or prolonged contact may result in drying, reddening, itching, pain, inflammation, cracking and possible secondary infection with tissue damage.
No significant effects are expected to occur following short term exposure. Repeated or prolonged contact with large amounts of this material may result in absorption through the skin to produce toxic effects.

POTENTIAL HEALTH EFFECTS, EYE

May cause slight transient irritation, lacrimation (tears) and a burning sensation in the eyes.
Exposure to vapors, fumes or mists may cause irritation.
Prolonged or repeated exposure may cause irritation and conjunctivitis.

POTENTIAL HEALTH EFFECTS, INHALATION

Breathing of the mists, vapors or mists may irritate the nose, throat and lungs. Symptoms may include sore throat coughing, labored breathing, sneezing and burning sensation, depending on the concentration and duration of exposure.
May cause central nervous system depression or effects. Symptoms may include headache, excitation, euphoria, dizziness, in-coordination, drowsiness, light-headedness, blurred vision, fatigue, tremors, convulsions, loss of consciousness, coma, respiratory arrest and death, depending on the concentration and duration of exposure. May cause cardiac sensitization, including arrhythmia (irregular heart beat) and death due to cardiac arrest. Overexposure to this material may cause systemic damage including target organ effects listed under "Toxicological Information" (Section 11). Other specific symptoms of exposure are listed under "Toxicological information" (Section 11).

POTENTIAL HEALTH EFFECTS, INGESTION

May cause irritation of the mouth, throat and gastrointestinal tract. Symptoms may include salivation, pain, nausea, vomiting and diarrhea. Aspiration into lungs may cause chemical pneumonia and lung damage. Exposure may also cause central nervous system symptoms similar to those listed under "Inhalation" (see Inhalation section). Overexposure to this material may cause systemic damage including target organ effects listed under "Toxicological Information" (Section 11). Other specific symptoms of exposure are listed under "Toxicological Information" (Section 11).

SECTION 4 - FIRST AID MEASURES

SKIN

Immediately wash skin with plenty of soap and water while removing contaminated clothing and shoes. Get medical attention if irritation develops or persists.
Place contaminated clothing in closed container for storage until laundered or discarded. If clothing is to be laundered, inform person performing operation of contaminant's hazardous properties. Discard contaminated leather goods.

EYE

Flush immediately with large amounts of water for at least 15 minutes. Eyelids should be held away from the eyeball to ensure thorough rinsing. Get medical attention if irritation persists.
MATERIAL SAFETY DATA SHEET

INHALATION
Remove to fresh air. If not breathing, institute rescue breathing. If breathing is difficult, ensure airway is clear and give oxygen. Keep affected person warm and at rest. GET IMMEDIATE MEDICAL ATTENTION.

INGESTION
Do not induce vomiting because of danger of aspirating liquid into lungs, causing serious damage and chemical pneumonitis. If spontaneous vomiting occurs, keep head below hips to prevent aspiration and monitor for breathing difficulty. Gastric lavage should be performed only by qualified medical personnel. Keep affected person warm and at rest. GET IMMEDIATE MEDICAL ATTENTION.

NOTES TO PHYSICIAN
Gastric lavage may be indicated if ingested. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. In cases of acute poisoning, artificial respiration with administration of oxygen may be useful for support. DO NOT GIVE EPINEPHRINE, EPHEDRINE OR SIMILAR ADRENERGIC DRUGS. THEY MAY INDUCE FATAL VENTRICULAR FIBRILLATION. Electrocardiograph monitoring should be carried out with severely ill patients to anticipate possible cardiac arrest.

SECTION 5 - FIRE FIGHTING MEASURES AND EXPLOSION DATA

HAZARDOUS COMBUSTION PRODUCTS
Combustion may produce hazardous combustion products such as COx and irritating vapors.

EXTINGUISHING MEDIA
Use water spray, dry chemical, carbon dioxide or fire-fighting foam for Class B fires to extinguish fire.

BASIC FIRE FIGHTING PROCEDURES
Evacuate area and fight fire from a safe distance.
If leak or spill has not ignited, ventilate area and use water spray to disperse gas or vapor and to protect personnel attempting to stop a leak. Use water spray to cool adjacent structures and to protect personnel. Shut off source of flow if possible. Stay away from storage tank ends. Withdraw immediately in case of rising sound from venting safety device or any discoloration of storage tank due to fire.
Firefighters must wear NIOSH approved positive pressure breathing apparatus (SCBA) with full face mask and full protective equipment.

UNUSUAL FIRE & EXPLOSION HAZARDS
Vapors may form explosive mixture with air. Vapors can travel to a source of ignition and flash back. Explosion hazard if exposed to extreme heat or to thermal shock.

Flash Point Greater than 158°F or (70°C) TAG CLOSED CUP (ASTM D56)
Auto ignition Temperature 720 - 835°F or (382 - 446°C)
Flammability Limits in Air, Lower, % by Volume Not disclosed or Not applicable
Flammability Limits in Air, Upper, % by Volume Not disclosed or Not applicable

SECTION 6 - ACCIDENTAL SPILL OR LEAK PROCEDURES

EMERGENCY ACTION
Eliminate and/or shut off ignition sources and keep ignition sources out of the area. Keep unnecessary people away; isolate hazard area and deny entry. Stay upwind. Isolate for 800 meters (1/2 mile) in all directions if tank, rail car or tank truck is involved in fire. Evacuate area endangered by release as required. (See Exposure Controls/Personal Protection, Section 8.)

ENVIRONMENTAL PRECAUTIONS
Eliminate all sources of ignition. Isolate hazard area and deny entry. If material is released to the environment, take immediate steps to stop and contain release. Caution should be exercised regarding personnel safety and exposure to the released material. Notify local, provincial and/or federal authorities, if required.

SPILL OR LEAK PROCEDURE
Keep unnecessary people away. Isolate area for at least 50 meters (150 feet) to preserve public safety. For large spills, consider initial evacuation for at least 300 meters (1000 feet). Keep ignition sources out of area and shut off all ignition sources. Absorb spill with inert material (e.g., dry sand or earth) then place in a chemical waste container. Large Spills: Dike far ahead of liquid spill for later disposal. Use a vapor suppressing foam to reduce vapors. Stop leak when safe to do so. See Exposure Controls/Personal Protection (Section 8).

SECTION 7 - PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE

HANDLING
Ground lines and equipment used during transfer to reduce the possibility of static spark-initiated fire or explosion. Use non-sparking tools. Do not cut, grind, drill, weld or reuse containers unless adequate precautions are taken against these hazards. Do not eat, drink or smoke in areas of use or storage.

STORAGE
Store in tightly closed containers in a cool, dry, isolated, well-ventilated area away from heat, sources of ignition and incompatibles. Avoid contact with strong oxidizers. Empty containers may contain material residue. Do not reuse without adequate precautions. Do not eat, drink or smoke in areas of use or storage.
SECTION 8 - EXPOSURE CONTROL / PERSONAL PROTECTION

ENGINEERING CONTROLS
General or local exhaust ventilation and other forms of engineering controls are the preferred means for controlling exposures.

EYE PROTECTION: PERSONAL PROTECTION EQUIPMENT (PPE)
Keep away from eyes. Eye contact can be avoided by using chemical safety glasses, goggles, and/or face shield.
Have eye-washing facilities readily available where eye contact can occur.

SKIN PROTECTION: PERSONAL PROTECTION EQUIPMENT (PPE)
Avoid skin contact with this material. Use appropriate chemical protective gloves when handling. Protective glove materials include, but are not limited to Viton, Silver Shield/4H (PE/EVAL/PE). Additional protective clothing may be necessary.
Good personal hygiene practices such as properly handling contaminated clothing, using wash facilities before entering public areas and restricting eating, drinking and smoking to designated areas are essential for preventing personal chemical contamination.

RESPIRATORY PROTECTION: PERSONAL PROTECTION EQUIPMENT (PPE)
A NIOSH approved air-purifying respirator with an appropriate cartridge or canister, such as an organic vapor cartridge, may be used in circumstances where airborne concentrations may exceed exposure limits. Protection provided by air purifying respirators is limited. Use a positive pressure air supplied respirator if there is any potential for an uncontrolled release, exposure levels are not known, or any other circumstances where air purifying respirators may not provide adequate protection.

SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

ODOR AND APPEARANCE
AMBER LIQUID WITH A HYDROCARBON ODOR

Boiling Point: Greater than 212°F
Flash Point: Greater than 158°F of (70°C) TAG CLOSED CUP (ASTM D56)
Specific Gravity: 0.87-93 at 24°C
Melting Point: Not disclosed or not applicable
Percent Volatile: Not disclosed or not applicable
Vapor Pressure: 0.5 psi
Vapor Density: Not disclosed or not applicable
Bulk Density: Not disclosed or not applicable
Solubility in Water: Not disclosed or not applicable
Octanol/Water Partn: 3.30 - 4.50 @ 25°C
Volatile Organic: Not disclosed or not applicable
pH Value: ESSENTIALLY NEUTRAL
Freezing Point: Not disclosed or not applicable
Evaporation Rate: VERY SLOW
Molecular Weight: Not disclosed or not applicable
Chemical Family: HYDROCARBON MIXTURE
Odor Threshold: Not disclosed or not applicable

SECTION 10 - STABILITY AND REACTIVITY DATA

STABILITY/INCOMPATIBILITY
Incompatible with oxidizing agents. See precautions under Handling & Storage (Section 7).

HAZARDOUS REACTIONS/DECOMPOSITION PRODUCTS
Combustion may produce COx and irritating vapors.

SECTION 11 - TOXICOLOGICAL INFORMATION

ROUTES OF EXPOSURE
Inhalation, ingestion, skin and eye contact.

LD50
LD50: 6-7 g/kg (rat, oral)
LD50: >2 g/kg (rat, dermal)

LC50
LC50: >4688 mg/m3 (rat, 4 hr) - maximum achievable saturated vapor concentration.
TOXICOLOGICAL DATA
Acute or chronic overexposure to this material or its components may cause systemic toxicity, including adverse effects to the following: skin, liver, kidney, cardiovascular and nervous system. Reports have associated repeated and prolonged occupational overexposure to solvents with permanent brain and nervous system damage (sometimes referred to as solvent or painter's syndrome). Intentional misuse by deliberately concentrating and inhaling this product may be harmful or fatal. This material contains benzene. Acute benzene poisoning causes central nervous system depression. Chronic exposure affects the hematopoietic system causing blood disorders including anemia and pancytopenia.

CARCINOGENICITY
This material contains benzene. Benzene is carcinogenic to laboratory animals when given by intubation or by inhalation. There is an association between occupational exposure to benzene and human leukemia. Carcinogenic determinations: IARC human positive and animal suspected carcinogen (IARC Class 1); NTP known carcinogen; ACGIH suspected carcinogen; OSHA carcinogen.

TERATOGENICITY, MUTAGENICITY, OTHER REPRODUCTIVE EFFECTS
This material contains benzene. Mutagenic and clastogenic in mammalian and non-mammalian test systems.

Reproductive or developmental toxicant only at doses that are maternally toxic, based on tests with animals. Pregnant women may be at an increased risk from exposure. Consumption of alcoholic beverages may enhance toxic effects.

PRE-EXISTING CONDITIONS AGGRAVATED BY EXPOSURE
Pre-existing medical conditions which may be aggravated by exposure include disorders of the skin, liver, kidney, respiratory, cardiovascular and nervous system.

SECTION 12 - ECOLOGICAL INFORMATION
ECO-TOXICOLOGICAL INFORMATION
Available data indicate similar materials (C10-C14 aromatic hydrocarbons) are toxic to aquatic organisms.
96-hour LL50, rainbow trout = 3 mg/L
96-hour LL50, daphnia magna = 1.1 mg/L
72-hour EL50, algae (Selenastrum capricornutum) = 1-3 mg/L

CHEMICAL FATE INFORMATION
Available data indicate similar materials (C10-C12 aromatic hydrocarbons) biodegrade in soil, readily degrade in the atmosphere, and may partition into air, soil and to a lesser extent, water.
Biodegradation in soil (OECD 301 F) = 60.7% in 28 days
Indirect Atmospheric Photo-degradation: T (half-life) = 3.7 to 29.2 hours

SECTION 13 - DISPOSAL PROCEDURES
WASTE DISPOSAL
This material, as supplied, when discarded or disposed of, is a characteristic hazardous waste according to Federal regulations (Subpart C of 40 CFR 261) due to its benzene content. Under the Resource Conservation and Recovery Act (RCRA), it is the responsibility of the user of the material to determine, at the time of disposal, whether the material is a hazardous waste subject to RCRA.

The transportation, storage, treatment and disposal of RCRA waste material must be conducted in compliance with 40 CFR 262, 263, 264, 268 and 270. Disposal can occur only in properly permitted facilities. Check state and local regulations for any additional requirements as these may be more restrictive than federal laws and regulations. Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate. Disposal of this material must be conducted in compliance with all federal, state and local regulations.

In Canada, wastes should be disposed of according to federal, state, provincial and local regulations.

SECTION 14 - TRANSPORTATION INFORMATION
BILL OF LADING-BULK (U. S. DOT)
Combustible Liquid, N.O.S., Solution, NA1993, PG III

BILL OF LADING - NON-BULK (U. S. DOT)
Non-Regulated
U. S. Department of Transportation (DOT) Requirements

General Transportation Information for Bulk Shipments

Proper Shipping Name: Combustible Liquid, N.O.S., Mixture
Hazard Class: Combustible Liquid
Packaging Group: PG III
UN/NA Code: NA1993
Labels Required: None
Placards Required: Combustible, NA1993
Reportable Quantity: See Regulatory Information (Section 15)

International Transportation

IATA: See DOT requirements
IMDG: See DOT requirements

COMMENTS: See Bill of Lading for proper shipping description, or consult 49 CFR 100-185 for specific shipping information.

SECTION 15 - REGULATORY INFORMATION

FEDERAL REGULATIONS

All ingredients are on the TSCA inventory, or are not required to be listed on the TSCA inventory. This material may be subject to export notification under TSCA section 12(b); contains: Naphthalene, CAS# 91-20-3, Effective Date 5/26/04. Consult OSHA’s Benzene standard 29 CFR 1910.1028 for provisions on air monitoring, employee training, medical monitoring, etc. A release of this material, as supplied, may be exempt from reporting under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA-40 CFR 302) by the petroleum exclusion. Releases may be reportable to the National Response Center (800-424-8802) under the Clean Water Act, 33 U.S.C. 1321(b)(3) and (5). This material does not contain toxic chemicals (in excess of the applicable de minimis concentration) that are subject to the annual toxic chemical release reporting requirements of the Superfund Amendments and Reauthorization Act (SARA) Section 313 (40 CFR 372). This material contains one or more substances listed as hazardous air pollutants under Section 112 of the Clean Air Act. This material contains up to 100% volatile organic compounds (VOCs) per 40 CFR Part 51.100. This material contains less than 1% hazardous air pollutants (HAPs) per Section 112 Clean Air Act Amendments of 1990. Check local, regional or state/provincial regulations for any additional requirements as these may be more restrictive than federal laws and regulations. Failure to report may result in substantial civil and criminal penalties.

STATE REGULATIONS

WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm.

INTERNATIONAL REGULATIONS

This material has been classified in accordance with the hazard criteria of the Hazardous Products Act and the Controlled Products Regulations (CPR) and this MSDS contains all the information required by the CPR.
WHMIS Classification: B3, D2B
INVENTORIES:
EU INVENTORY (EINECS): 274-759-3
KOREA INVENTORY (EC): KE-01915
US INVENTORY (TSCA): 70693-06-0

SARA 311/312 HAZARDCATEGORIES
Immediate Hazard: X Delayed Hazard: X Fire Hazard: X Pressure Hazard:
Reactivity Hazard: -

NFPA RATINGS
Health 1 Flammability 2 Reactivity 0 Special Hazards

HMIS RATINGS
Health 1* Flammability 2 Reactivity 0

WHMIS RATINGS
Compressed Gas Flammable/Combustible Oxidizer Acutely Toxic
Other Toxic Effects x Bio Hazardous Corrosive

SECTION 16 - ADDITIONAL COMMENTS AND INFORMATION

DISCLAIMER
NOTICE: The information presented herein is based on data considered to be accurate as of the date of preparation of this Material Safety Data Sheet. However, an MSDS may not be used as a commercial specification sheet of manufacturer or seller, and no warranty or representation, expressed or implied, is made as to the accuracy or comprehensiveness of the foregoing data and safety information, nor is any authorization given or implied to practice any patented invention without a license. In addition, no responsibility can be assumed by vendor for any damage or injury resulting from abnormal use, from any failure to adhere to recommended practices, or from any hazards inherent in the nature of the material.
AXI TANK SYSTEMS WARRANTY
LIMITED WARRANTY

AXI International makes every effort to assure that its products meet high quality and durability standards and expressly warrants the products described herein, against defects in material and workmanship for a period of one (1) year from the date of purchase. This warranty is not intended to supplant normal inspection, care and service of the products covered by the user, and shall not obligate AXI International to provide free service during the warranty period to correct breakage, maladjustment, or other difficulties arising out of abuse, misuse, or improper care and maintenance of such products. Our express warranty is subject to the following terms and conditions:

This warranty shall only extend to and is only for the benefit of original purchaser(s), or end customer(s) who use the products covered hereby. This warranty is not an onsite warranty. Travel requests will be at the discretion of AXI International. Defective systems and ancillary products will require a return authorization number and shipping to AXI Internationals’ Factory in Fort Myers, FL.

Any warranty claim received by AXI International after one (1) year from the date of purchase will not be honored even if it is claimed that the defect occurred prior to one (1) year from the date of purchase. Claims outside of this one (1) year period, and for claims not listed within, payment, repair, or service will be awarded at the discretion of AXI International.

This warranty shall not apply to products (1) which have been tampered with, altered or repaired by anyone other than AXI International without the express prior written consent of AXI International (2) which have been installed improperly or subject to misuse, abuse, accident, negligence of others, improper operation or maintenance, neglect or modification, or (3) which have had the serial number altered, defaced or removed.

The liability of AXI International under this warranty is limited to the repair or replacement of the defective product. AXI International assumes NO LIABILITY for labor charges or other costs incurred by any purchaser incidental to the service, adjustment, repair, return, removal or replacement of products. AXI INTERNATIONAL ASSUMES NO LIABILITY FOR ANY GENERAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL, CONTINGENT OR OTHER DAMAGES UNDER ANY WARRANTY, EXPRESS OR IMPLIED, AND ALL SUCH LIABILITY IS HEREBY EXPRESSLY EXCLUDED.

AXI INTERNATIONAL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE, WITH RESPECT TO THE PRODUCTS COVERED BY THIS WARRANTY POLICY, EXCEPT AS EXPRESSLY PROVIDED FOR HEREIN. NO EMPLOYEE, AGENT, REPRESENTATIVE OR DISTRIBUTOR IS AUTHORIZED TO MAKE ANY WARRANTY ON BEHALF OF AXI INTERNATIONAL OTHER THAN THE EXPRESS WARRANTY PROVIDED FOR HEREIN.

AXI International reserves the right at any time to make changes in the design, material, function and specifications of its products. Any such changes shall not obligate AXI International to make similar changes in such products that were previously manufactured.

WARRANTY CLAIM PROCEDURE

To make a claim under this warranty, please call AXI International at (239) 690 9589 or (877) 425-4239, and provide: Name and location where unit was purchased, the date and receipt of purchase, model number, serial number, and a detailed explanation of the problem you are experiencing. The Customer Service Representative may, at the discretion of AXI International, arrange for a Field Engineer to inspect your system. If the inspection discloses a defect covered by its limited warranty, AXI International will either repair or replace the defective parts or products. AXI assumes no liability, if upon inspection, AXI International or its representative determines that there is no defect or that the damage to the system resulted from causes not within the scope of this limited warranty. For service and sales, please contact AXI International:

AXI International
5400-1 Division Drive, Fort Myers, FL 33905
Phone: 1-877-425-4239
Fax: 239-690-1195

Web: www.axi-international.com
Email: support@axi-international.com
TECHNICAL ASSISTANCE AND ORDERING

Please write to, fax, email or call:
AXI International
5400 Division Drive
Fort Myers, FL 33905
Tel: 239-690-9589
Fax: 239-690-1195
Email: info@axi-international.com
Internet: www.axi-international.com

Please provide the following information:
Serial Number of your Smart FPS, the required part numbers and quantity.

FUEL CATALYST IDENTIFICATION

Serial Number: ________________________________ (e.g. B 090010 – C)

SYSTEM SPECIFICATION:

Inspected by: ________________________________ Date: ____________________
AXI International's innovative fuel solutions restore, maintain, and improve the quality and stability of diesel fuel wherever it is used or stored. AXI's product range includes automated enclosed fuel maintenance systems, mobile fuel polishing systems, compact fuel maintenance systems, fully integrated day tank systems, fuel transfer systems, fuel conditioners, Tier 4 compliant fuel catalyst, fuel sampling, and fuel testing.

AXI also designs, engineers, and manufactures custom built fuel system solutions – working side by side with its customers, architects, engineering firms, and facility management companies to create innovative, fully-automated fuel optimization and maintenance systems.